Prediction of Increased Mobility of Yogyakarta Residents in Controlling the Spread of COVID-19 Cases Using the Neural Network Algorithm
Abstract
High mobility in D.I Yogyakarta arises from tourist visits and educational activities as well as community activities which are quite dense. High mobility and density will affect the spread of COVID-19 in D.I Yogyakarta. Early preparation is needed to predict displacement in D.I Yogyakarta so that policies can be implemented as early as possible to prevent the emergence of a new wave of spread of COVID-19 in D.I Yogyakarta. In this study, the Neural Network Algorithm with Backpropagation model is used to predict the mobility of Yogyakarta D.I data from September 2021 to January 2022. To form the Neural Network Algorithm model using Rapidminer software with prediction criteria of accuracy and kappa. The prediction accuracy value obtained is 95.49% and the kappa value is 0.908. The results of this study indicate that the predictive value of Yogyakarta D.I mobility tends to be high.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
“BPS Provinsi D.I. Yogyakarta.” https://yogyakarta.bps.go.id/ (diakses Feb 02, 2022).
“Statistik Pariwisata DIY 2019 - Dinas Pariwisata Daerah Istimewa Yogyakarta.” https://visitingjogja.jogjaprov.go.id/28988/statistik-pariwisata-diy-2019/ (diakses Feb 02, 2022).
“Daerah DIY - Jumlah Peserta Didik.” http://bappeda.jogjaprov.go.id/dataku/data_dasar/cetak/482-jumlah-peserta-didik (diakses Feb 02, 2022).
R. A. Ghiffari, “Dampak Populasi Dan Mobilitas Perkotaan Terhadap Penyebaran Pandemi Covid-19 Di Jakarta,” Tunas Geogr., vol. 9, no. 1, hal. 81, 2020, doi: 10.24114/tgeo.v9i1.18622.
D. Rahmalia dan T. Herlambang, “Prediksi Cuaca Menggunakan Algoritma Particle Swarm Optimization-Neural Network (PSONN),” Semin. Nas. Mat. dan Apl., hal. 41–48, 2017.
D. D. Santika, B. Susanti, W. Anderson, dan K. Wongso, “Implementasi Metode Backpropagation Dalam Klasterisasi Objek,” CommIT (Communication Inf. Technol. J., vol. 1, no. 1, hal. 30, 2007, doi: 10.21512/commit.v1i1.465.
A. Sudarsono, “Jaringan Syaraf Tiruan Untuk Memprediksi Laju Pertumbuhan Penduduk Menggunakan Metode Bacpropagation (Studi Kasus Di Kota Bengkulu),” J. Media Infotama, vol. 12, no. 1, hal. 61–69, 2016, doi: 10.37676/jmi.v12i1.273.
P. Ristoski, C. Bizer, dan H. Paulheim, “Mining the Web of Linked Data with RapidMiner,” Web Semant. Sci. Serv. Agents World Wide Web, vol. 35, hal. 142–151, 2015, doi: 10.1016/j.websem.2015.06.004.
A. Hendrawan, V. Vydia, dan S. R. Cholil, “PREDIKSI PANDEMI COVID 19 KOTA SEMARANG MENGGUNAKAN PENDEKATAN NEURAL NETWORK Aria,” J. Riptek. Vol. 15 43-46., vol. 15, no. 1, hal. 43–46, 2020, [Daring]. Tersedia pada: http://riptek.semarangkota.go.id.
Y. E. Shao, “Prediction of currency volume issued in taiwan using a hybrid artificial neural network and multiple regression approach,” Math. Probl. Eng., vol. 2013, 2013, doi: 10.1155/2013/676742.
P. Perubahan Penggunaan Lahan Dengan, A. Nur Rahmah, S. Subiyanto, dan F. Janu Amarrohman, “ARTIFICIAL NEURAL NETWORK (ANN) DI KOTA SEMARANG,” J. Geod. Undip Januari, no. 9, 2020.
DOI: http://dx.doi.org/10.28989/senatik.v7i0.452
Article Metrics
Abstract view : 207 timesPDF (Bahasa Indonesia) - 49 times
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Conference SENATIK P-ISSN :2337-3881 and E-ISSN : 2528-1666
Jumlah penggunjung = orang