The Effect of Peak Signal to Noise Ratio (PSNR) Values on Object Detection Accuracy in Viola Jones Method

Haruno Sajati

Abstract


Image quality is an important parameter in object detection. Image with good quality will produce high accuracy in the object detection process. Image quality is measured using the peak signal comparison of the original image with the interference that occurs in the image. This comparison is formulated with the Peak Signal To Noise Ratio (PSNR). PSNR values obtained from variations in image quality improvements will be seen in its characteristics in object detection methods using the Viola Jones method. The higher PSNR value will definitely produce better accuracy, but improving the image to the best quality will drain resources and a high computational burden so it needs to find a minimum PSNR value that can still be considered good in the object detection process. The minimum PSNR value for the image is said to be feasible to be processed 19.05 dB. The minimum PSNR value before the object can no longer be detected is 12.43 dB.

Keywords


PSNR; Viola Jones; Object Detection; Image Quality Assessment

Full Text:

PDF SF in xlsx

References


Sajati, H., (2018), Analisis Kualitas Perbaikan Citra Menggunakan Metode Median Filter Dengan Penyeleksian Nilai Pixel, Jurnal Ilmiah Angkasa Vol. 10, No. 1, P-ISSN 2085-9503, E-ISSN 2581-1355

Roopaei, M., Eghbal, M., Shadaram, M., & Agaian, S. (2016). Noise-Free Rule-Based Fuzzy Image Enhancement. Electronic Imaging, 2016(13), 1-5. doi: 10.2352/issn.2470-1173.2016.13.iqsp-225

Abraham, V.A., & Priya, S., (2017). FR IQA Classification and Evaluation, International Journal of Innovative Research in Science, Engineering and Technology, ISSN (Online) : 2319 - 8753, ISSN (Print) : 2347 – 6710

Purwanto, P., Dirgantoro, B., & Jati, A. N. (2015). Implementasi Face Identification Dan Face Recognition Pada Kamera Pengawas Sebagai Pendeteksi Bahaya. Universitas Telkom

Viola, P., & Jones, M. Rapid (2001). Object Detection Using A Boosted Cascade Of Simple Features. Proceedings Of The 2001 IEEE Computer Society Conference On Computer Vision And Pattern Recognition. CVPR 2001. doi: 10.1109/cvpr.2001.990517

Pavani, S., Delgado, D., & Frangi, A. (2010). Haar-like features with optimally weighted rectangles for rapid object detection. Pattern Recognition, 43(1), 160-172. doi: 10.1016/j.patcog.2009.05.011

Kusumaningrum, A. (2017). Pengaruh Jumlah File Training Terhadap Akurasi Pendeteksian Obyek Pada Metode Viola Jones. Conference SENATIK STT Adisutjipto Yogyakarta, 3. doi: 10.28989/senatik.v3i0.99

Khalid, M., Pal, N., & Arora, K. (2014). Clustering of Image Data Using K-Means and Fuzzy K-Means. International Journal Of Advanced Computer Science And Applications, 5(7). doi: 10.14569/ijacsa.2014.050724




DOI: http://dx.doi.org/10.28989/senatik.v4i0.139

Article Metrics

Abstract view : 666 times
PDF - 344 times SF in xlsx - 61 times

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Conference SENATIK P-ISSN :2337-3881 and  E-ISSN : 2528-1666

Jumlah penggunjung = Web Analytics orang

Statistik Senatik

Flag Counter