Comparison of Result Clustering Study Case Posyandu With The Scalable K Means ++ Clustering Method

Ariadi Retno Hayati, Mamluatul Hani’ah, Ika Kusumaning

Abstract


Application of data grouping aims to group data unsupervised, in this study comparing the results of the grouping with the K mean clustering method, K Means ++ clustering method and the Scalable K Means ++ clustering method. Based on the test results by analyzing the iteration error value, the results of the analysis show that the K Means ++ clustering and Scalable K Means ++ clustering method will produce less error values when compared to the K Means Clustering method. The data used as the basis of analysis in this study is based on data from Posyandu Rajawali Singosari in Malang. The initial initialization value of the centroid can be determined or randomly and is very influential for the data grouping process. Calculation analysis program used scilab programming and the error results with the graph of the minimum value. Result in test data, error value test data 1 get Scalable K Means ++ clustering error minimum 0,07, test data 2 get error value minimum K Means ++ Clustering 0,15, test data 3 get error value minimum 0,005 at metode Scalable K Means Clustering, test data 4 get error value minimum 0,15 at K Means ++ Clustering.


Keywords


Scalability K Means ++, K Means ++ Clustering, K Means Clustering, Data Posyandu Rajawali Singosari

References


Bahmani,B.,Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S. (2012).. Scalable K Means++, PVLDB, Vol. 5, No. 7, pp. 622-633

Dhuhita,W, M, P.(2015) , Clustering Menggunakan Metode K Means Untuk Menentukan Status Gizi Balita, Jurnal Informatika, Vol. 15, No. 2.

Roihan, A., Sunarya, A., Rafika, A, S. (2019), Pemanfaatan Machine Learning dalam Berbagai Bidang: Review Paper, Indonesian Journal on Computer and Information Technology, 5.

Gustientiedina., Adiya, M, H, Desnelita, Y., (2019), Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru, Jurnal Nasional Teknologi Dan Sistem Informasi- Vol. 05 No. 01.

Metisen, B, M.,Sari, H, L .,(2015), Analisis Clustering Menggunakan Metode K Means Dalam Pengelompokkan Penjualan Produk Pada Swalayan Fadhila, Jurnal Media Infotama Vol. 11 No 2.

Lida, M.,(2018) Penerapan Data Mining Dalam Mengelompokkan Kunjungan Wisatawan Ke Objek Wisata Unggulan Di Prov. . DKI Jakarta Dengan K-MEANS.

Wakhidah, N.,(2010) , Clustering Menggunakan K-M algorithm , Jurnal Transformatika Vol 8 No 1.

Juliawan, D., Amir, F., Desi, E., (2019), Penerapan Data Mining Metode Clustering Pada CV. Secom Infotech Menggunakan Algoritma KMeans, Prosiding Seminar Nasional Riset Information Science, ISSN: 2686-0260.

Nurhayati., Busman., Iswara, R, P., (2019), Pengembangan Algoritma Unsupervised Learning Technique Pada Big Data Analysis di Media Sosial Sebagai Media Promosi On Line Bagi Masyarakat, Jurnal Teknik Informatika Vol 12 No. 1

Anggara, M., Sujiani, H., Nasultion, H., (2016), Pemilihan Distance Measure Pada K-Means Clustering Untuk Pengelompokkan Member Di Alvaro Fitness, Jurnal Sistem dan Teknologi Informasi (JUSTIN) Vol. 1, No. 1.

Thamrin, S,A., (2006), Penggunaan Data Mining Saat Ini Dan Tantangannya Di Masa Depan, Jurnal atematika Statistika dan Komputasi, Vol 3 No 1.




DOI: http://dx.doi.org/10.28989/senatik.v6i0.408

Article Metrics

Abstract view : 207 times
PDF (Bahasa Indonesia) - 142 times

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Conference SENATIK P-ISSN :2337-3881 and  E-ISSN : 2528-1666

Jumlah penggunjung = Web Analytics orang

Statistik Senatik

Flag Counter